Main Article Content

Abstract

The PosAja mobile application is a digital service owned by Pos Indonesia in the field of delivery. Despite being downloaded by more than 100K users, the PosAja application has experienced a decline in rating and application productivity. This research intends to represent user complaints through review data analysis and develop a more effective and efficient service science design based on user experience. The research method applied is descriptive quantitative with data analysis applying SVM to classify positive and negative sentiments from review data. Model evaluation was carried out by training the training and test data subsets 3 times with variations of k = 5, k = 7, and k = 10. The results showed that the best accuracy was obtained with an accuracy of 89.98% on the SVM_kernel Sigmoid parameter. Analysis of review data revealed that the sentiment of PosAja application users tends to be negative compared to positive sentiment on the Google Play Store. To improve user experience and satisfaction, service science design development should focus on continuous improvement and evaluation of the PosAja application.

Keywords

Customer Experience Operations Management Service Science SVM User Satisfaction

Article Details

How to Cite
Sukma Rukmana, & Wiwik Handayani. (2023). Analysis of Service Science Design through Customer Experience to Increase PosAja Application User Satisfaction. Kontigensi : Jurnal Ilmiah Manajemen, 11(2), 513-527. https://doi.org/10.56457/jimk.v11i2.402

References

  1. AppBrain. (2023, February 26). Android Statistics - Top categories. Diambil kembali dari AppBrain: https://www.appbrain.com/stats/android-market-app-categories
  2. Asosiasi Penyelenggara Jasa Internet Indonesia (APJII) . (2022).
  3. Bascur, C., & Rusu, C. (2020). Customer Experience in Retail: A Systematic Literature Review. MDPI Applied Sciences, 1-18.
  4. Bolton, R. N. (2019). Service Timing: Designing and Executing Service in a Dynamic Environment. Dalam P. P. Maglio, C. A. Kieliszewski, J. C. Spohrer, K. Lyons, L. Patrício, & Y. Sawatani, Service Science: Research and Innovations in the Service Economy (hal. 13-34). Switzerland: Springer Nature Switzerland.
  5. Dorsey, M., Temkin, B., & Quaadgras, T. (2022). The State of CX Management. Qualtrics XM Institute.
  6. Grifin in Nasruddin, R. M. (2023). Pengaruh Service Quality terhadap Customer Satisfaction pada Layanan Jasa Go-Jek di Kota Palopo. Jurnal Manajemen Perbankan Keuangan Nitro (JMPKN), 26-38.
  7. Hasibuan, E., & Heriyanto, E. A. (2022). Analisis Sentimen pada Ulasan Aplikasi Amazon Shopping di Google Play Store Menggunakan Naive Bayes Classifier. Jurnal Teknik dan Science, 13-24.
  8. Holmlund, M., Vaerenbergh, Y. V., Ciuchita, R., Ravald, A., Sarantopoulos, P., Ordenes, F. V., & Zaki, M. (2020). Customer Experience Management in The Age of Big Data Analytics: A Strategic Framework. Journal of Business Research, 356-365.
  9. Luigi Cantone, P. T. (2019). Service-Dominant Logic: Inward and Outward Views. Dalam P. P. Maglio, C. A. Kieliszewski, J. C. Spohrer, K. Lyon, L. Patrício, & Y. Sawatani, Service Science: Research and Innovations in the Service Economy (hal. 675-710). Switzerland: Springer Nature.
  10. Maglio, P. P., Kieliszewski, C. A., Spohrer, J. C., Lyons, K., Patrício, L., & Sawatani, Y. (2019). Service Science: Research and Innovations in the Service Economy. Switzerland: the registered company Springer Nature.
  11. Permana, H., & Djatmiko, T. (2018). Analisis Pengaruh Kualitas Layanan Elektronik (E-Service Quality) terhadap Kepuasan Pelanggan Shopee di Bandung. SOSIOHUMANITAS, 201-2015.
  12. Prasuraman et al in Hizam, S. M., & Ahmed, W. (2019). A Conceptual Paper on SERVQUAL-Framework for Assesing Quality of Internet of Things (IoT) Service. International Journal of Financial Research, 387-397.
  13. Priadana, S., & Sunarsi, D. (2021). Metode Penelitian Kuantitatif. Indonesia: Pascal Books.
  14. Putro, H. P., Widyaningsih, T. W., Englishtina, I., Nursanty, E., Efitra, Sepriano, & Dema, H. (2023). Development Of Artificial Intelligence Applications (Studi Kasus & Implementasi Al Menggunakan Berbagai Bahasa Pemrograman). Indonesia: PT Sonpedia Publishing Indonesia.
  15. Revika, N. R., & Handayani, W. (2022). Desain Service Science untuk Meningkatkan Kepuasan. BRILIANT: Jurnal Riset dan Konseptual, 841-852.
  16. Rogerson, A., Hankins, E., Nettel, P. F., & Rahim, S. (2022). Government AI Readiness Index 2022. Oxford Insight.
  17. Sartika, S. H., Murdana, I. M., Permadi, L. A., Sudarso, A., Purba, A. T., Sahir, S. H., . . . Fajrillah. (2023). Customer Relationship Management. Indonesia: Yayasan Kita Menulis.
  18. Testiana, G., & Erlina, D. (2020). Analisis Sentimen pada Twitter terhadap UIN Raden Fatah Menggunakan Support Vector Machine. Indonesia: Rafah Press.
  19. Tresnawati, D., Guno, Y., Satwika, I. P., Prihatmanto, A. S., & Mahayana, D. (2022). Artificial Intelligence serta Singularitas Suatu Kekeliruan atau Tantangan. Jurnal Algoritma, 181-188.
  20. Venkatesh, V., Afuang, A., Rago, T., Carreon, M., Gupta, V., & Cai, J. D. (2022, April 6). Asia/Pacific* Artificial Intelligence Spending to Reach $32 Billion in 2025, Says IDC. Diambil kembali dari IDC Media Center: https://www.idc.com/getdoc.jsp?containerId=prAP49010122
  21. Zein, A. (2021). Kecerdasan Buatan Dalam Hal Otomatisasi Layanan. Jurnal Ilmu Komputer, 16-25.