Main Article Content
Abstract
Scheduling lectures at a college is a routine activity every semester and is a process to implement events that contain components of courses and classes in time slots that contain components of time and space. The problem that often occurs in scheduling activities is the occurrence of conflicts between one schedule and another. One method to solve these problems is to use artificial intelligence (AI). One method in AI that is considered to provide a solution to scheduling problems is Harmony Search. Harmony Search is an area of computer science that bases its algorithms on music. The Harmony Search algorithm compares music with all its devices to optimization problems. For example, each musical instrument is associated with a decision variable; the musical pitch is associated with a variable value, harmony is associated with a solution vector. Like a musician who plays certain music, improvises playing a random tone, or based on experience to find a beautiful harmony, the variables in Harmony Search have random values or values obtained from iterations (memory) to find the optimal solution. By applying the Harmony Search algorithm to prepare the lecture schedule, it is hoped that an optimal arrangement of the lecture schedule can be created.
Keywords
Article Details
By exercising the Licensed Rights, You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International Public License.
References
- Ana Ratna Wati, D., & Agusti Rochman, Y. (2008). Model Penjadwalan Matakuliah Secara Otomatis Berbasis Algoritma Particle Swarm Optimization (PSO). UII Yogyakarta.
- Aulia, I., Nababan, E. B., & Muchtar, M. A. (2012). Penerapan Harmony Search Algorithm dalam Permasalahan Penjadwalan Flow Shop. Jurnal Dunia Teknologi Informasi, 1, 1–7.
- Desiani, A., & Arhami, M. (2006). Konsep Kecerdasan Buatan. Andi Offset.
- Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. Simulation, 76(2), 60–68. https://doi.org/10.1177/003754970107600201
- Mahdavi, M., Fesanghary, A., & Damangir, E. (2007). An. Improved Harmony Search Algorithm for Solving Optimization Problems. Applied Mathematics and Computation, 188, 1567–1579.
- Priyo, S. S., Helmie, A. W., Indra, W., Nurdin, B., & K, T. W. (2016). Chapter 7 Backpropagation dan Aplikasinya (pp. 135–146).
- Rachmawati, H. (2012). Analisis Penyelesaian Masalah Penjadwalan Kuliah Menggunakan Pewarnaan Graph oleh Algoritma Koloni Lebah dengan Parameter Soft Contsraints Prioritas Dosen. ITS Surabaya.
- Santosa, B., & Willy, P. (2011). Metoda Heuristik, Konsep dan Implementasi. Guna Widya.
- Setemen, K. (2008). Kombinasi Algoritma Genetika dan Tabu Search dalalm Penyusunan Jadwal Kuliah. ITS Surabaya.
- Sutiono, N., Imanuel Malik, N., & Rojali. (2012). Automatisasi Timetabling Asisten Pengajar pada Software Laboratory Center menggunakan Harmony Search. Binus University.
- Suyanto. (2007). Artificial Intelligence; Searching, Reasoning, Planning and Learning. Informatika.
- Teddy. (2009). Penyelesaian Penjadwalan Kuliah Sebagai Constraint Satisfaction Problem dengan Genetic Algorithm. Universitas Indonesia.